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Abstract—Modern Open Source Software (OSS) projects de-
pend on the globally-distributed and synchronized software
development. The online collaboration promotes more and more
developers to join in OSS projects, while on the other hand,
integrating new developers with teams is challenging and pivotal
to the success of a project. In this paper, we propose a novel
expert recommendation method, based on knowledge embedding,
that realizes real-time recommendation for working developers.
To capture structural information of source files in call graph,
we use node2vec algorithm to convert file entities within projects
into knowledge mappings within low-dimensional space, based
on which we further propose four features to capture the
work status and social relationship of developers. We then
design a recommender system using random forest method to
recommend appropriate experts for the developers. Experiments
on 20 Apache OSS projects show that, compared with the baseline
methods, our approach behaves significantly better in terms of
a series of performance metrics.

Keywords—expert recommendation; open source software;
knowledge embedding; node2vec; machine learning.

I. Introduction

The rapid growth of software development practices in

recent years has been a bonanza for technology diffusion and

commercial advantage. These outstanding success made in

Open Source Software (OSS) has mostly involved the co-

operation pattern of social-technical interaction and globally-

distributed fashion.

Specifically, Apache Software Foundation (ASF) [1],

Github [2], and Stack Overflow (SO) [3] are classic com-

munities in software engineering domain. An ASF project

involves a software development team aiming at creating a ro-

bust, commercial-grade, multi-functional, and freely-available

source code implementation. Typically, the project is jointly

managed by a group of volunteers, located around the world,

who contribute ideas, code, and documentation. The working

product that is contributed by committing to files would be

recorded in a Git repository. In addition, hundreds of users

communicate, plan, and develop the software through the

Internet. As well, the history of communication information

would be stored in a particular mailing list.

The synchronous development, as a kind of social syn-

chrony [4], [5] in software engineering, is reported as highly

associated with effective productivity and coordination: during

the co-commit time, the project size often grows faster with

less coding effort than other time [1]. From the perspective of

developers themselves, Xuan et al. [6] found that developers

with fair balance between work and talk tend to produce as

much work as those putting more emphasis on work or talk.

Most interestingly, the fair balance for developers is important

to sustain OSS projects. Moreover, unlike traditional code

ownership heuristics based on the authorship of code changes,

Thongtanunam et al. [7] found that code review activities

become more and more important to be a reference stan-

dard of code ownership and a judge criterion of developer’s

contribution in Modern Code Review (MCR). Their statistic

result shows that 67% to 86% of developers only contribute

to modules by reviewing code changes, 18% to 50% of these

review-only contributors are documented core developers of

the studied systems.

However, finding a list of appropriate developers to ex-

change knowledge and experiences and seek help is always

not straightforward. Rubin et al. [8] gave an illustration that

one participant, working in a large organization, mentioned

that he has a problem to find the experts with experiences

relevant to what he is trying to develop. They also reported that

time differences, language differences, and the lack of physical

access make coordinating people in different time zones less

productive. An empirical investigation by Thongtanunam et
al. [9] shows that 4% to 30% of reviews have code-reviewer

assignment problem in OSS projects, these reviews with

code-reviewer assignment problem require 12 days longer to

approve code changes.

Expert recommendation is widely studied in the area of

software engineering. Bayati et al. [10] proposed a security

expert recommender for social Q&A Websites, e.g., SO, that

applies security ontology, glossary, programming language

and location information to find the experts in appropriate

local area who answered to related posts with the highest

answer count and vote value. Naguib et al. [11] employed

Latent Dirichlet Allocation (LDA) to cluster bug reports into

topics to be embedded as activity profiles for users. For a

new bug report, the model can assign recommendation(s)

according to the related activity profiles. Shokripour et al. [12]

utilized a noun extraction process on several information

sources to determine bug location information and a simple



term weighting scheme to provide a bug report assignment

recommendation. Yu et al. [13] combined technical semantic

similarity with social comment relation network analyzing to

recommend highly relevant code-reviewers for GitHub pull-

requests. Steinmacher et al. [14] considered source code

artifacts, issue tracker, mail threads and workspace information

to calculate the current technical and social interest score, and

then proposed a recommendation system to help newcomers

find the most adequate support from other people in OSS

projects. Balachandran et al. [15] introduced a reviewer recom-

mendation tool, namely ReviewBot, that uses historical records

of changed lines within source files to assign appropriate

reviewers for VMware projects. Patanamon et al. [9] proposed

a file location-based code-reviewer recommendation approach

for modern code review, called RevFinder, that leverage file

path similarity of relevant review requests. Rahman et al. [16]

proposed a recommendation technique, namely CORRECT,

to identify code-reviewers using cosine similarity of tokens

(shared libraries and adopted technologies) from relevant re-

quests in GitHub.

In this paper, we propose a novel approach for realizing real-

time expert recommendation for developers in ASF projects.

Inspired by Grover et al. [17], we first adopt a feature

representation model for converting source file entities into

knowledge mappings in low-dimensional space to capture

file- and function-level information; then we look up relevant

knowledge mappings of source files to be integrated as a

working state of one developer at the commit time; finally

we conduct recommendation system using machine learning

techniques to predict appropriate experts for this developer.

The rest of paper is organized as follows: In Sec. II,

we conduct an exploratory study on ASF project dataset.

Then, we propose a novel recommendation system based on

knowledge embedding in Sec. III. The evaluation metrics and

the comparison with baseline methods are shown in Sec. IV

and Sec. V, respectively. Finally, the paper is discussed and

concluded in Sec. VI.

II. Dataset

A. Data Description

We use the same dataset as Xuan et al. [1], [6], [18], and

mainly focus on 20 ASF projects. In each project, the data

provides commit activities and email communication records

for developers. For each commit, we employ the developer

ID, the commit time, the source file ID. For each email

communication, we employ the sender ID, receiver ID and the

sending time. Note that the communication records where the

sender ID is the same as the receiver ID are removed, because

these records cannot be regarded as social interactions. We

assume receiver IDs are experts in our experiments.

B. Exploratory Study

Before we introduce our method, we first take a glance

at our data. In Fig. 1, we plot the proportion of technical

communications in each project, i.e., the proportion of emails

sent or received by code contributors, i.e., developers, over

Fig. 1. The proportion of technical communications over all communications
in each project.

Fig. 2. The proportions of developers sent or received emails, (blue) over all
developers, and (green) over all email contacts, for each project.

all the emails in each project. It is shown that, such technical

communications occupy a large portion in all email communi-

cations, especially for cayenne, cxf, openejb, more than 95%

emails are sent or received by the developers. Furthermore,

we find that the developers who also sent or received emails

take up a large portion in all developers, but only occupy a

relatively small portion in all email contacts, in each project,

as shown in Fig. 2. This means that developers are used to

share knowledge and experience by email in these projects

and imply us that design of expert recommendation system

should consider not only the technical characteristics based

on the commits of developers on particular files but also the

social communication patterns between them and other users.

III. Method

The framework of this study is presented in Fig. 3. We

formulate our expert recommendation as a machine learning

problem, and solve it by three steps, i.e., file embedding, fea-
ture extraction, and machine learning. Specially, we first use



Fig. 3. The framework of our study.

node2vec method to learn the domain-specific file embeddings

from large numbers of source files in ASF projects. Then, we

propose four features to describe the behavioral pattern for

each developer. Finally, we use machine learning method to

establish a predicting model.

A. File Embedding

The traditional expert recommendation system only consider

the independent source file, however, the file-file relationships

also exhibit the significant influences on developer’s working

patterns, e.g., focus shifting pattern [18]. Thus, to better

describe the developer’s working patterns so as to design better

recommendation system, we should take file-file relationships

into consideration. Here, we use Doxygen tool [19] to gather

the call graphs of ASF projects, based on which we further

establish File Dependency Network (FDN). FDN is defined

as a weighted undirected graph G = (V, E,W), where nodes

represent source files, and two nodes vi and v j are linked if

there is a dependency relationship between the corresponding

source files, i.e., at least one function in file vi (or v j) calls

a function in file v j (or vi). The weight wi j of link represents

the total number of times that the functions in vi and those in

v j call each other.

Given the FDN, we next use the node2vec proposed by

Grover et al. [17] to capture the rich systematic and functional

features of source files in a project. node2vec is a new

algorithm for mapping nodes in a network to the feature

vectors in a low-dimensional space, preserving the neighbor-

hood information of these nodes. In our study, by utilizing

this method, we map the source files in the underlying call

graph to domain-specific file embedding. In particular, given

a source file vi, the node2vec algorithm seeks the optimization

of objective function which maximizes the log conditional

probability of neighborhood set VN(vi) for a source file vi:

max
f

∑
vi∈V

log P(VN(vi)| f (vi)), (1)

where f is the mapping function from network representation

to feature representation, i.e., f : V → �d, and d is the di-

mension of feature space. With the assumptions of conditional

independence and symmetry on feature space, the objective

function can be simplified to:∑
vi∈V

log P(VN(vi)| f (vi))

=
∑
vi∈V

∑
vni∈VN (vi)

log P(vni | f (vi))

=
∑
vi∈V

∑
vni∈VN (vi)

log
exp( f (vni) · f (vi))∑

vu∈V exp( f (vu) · f (vi))
, (2)

where vni is the node in the neighborhood set VN(vi). Calcula-

tion of Eq. (2) is very expensive in large network. To solve this

problem so as to improve the algorithm efficiency, node2vec

proposed a second order random walk sampling strategy with

a parameter q controlling the balance between Breadth-First
Sampling (BFS) and Depth-First Sampling (DFS). In particu-

lar, starting from the source file vi, we simulate a random walk

with length l. Then the ith file in the walk path is generated

by the following distribution:

P(ci = vx|ci−1 = vu, ci−2 = vt) =
{

πux/Z if (vu, vx) ∈ E
0 Otherwise

(3)

where πux = α(vt, vx) · wux is the unnormalized transition

probability, with the parameter

α(vt, vx) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
p if d(vt, vx) = 0

1 if d(vt, vx) = 1
1
q if d(vt, vx) = 2

(4)

wux being the link weight between nodes vu and vx, and Z =∑
vx πux being the normalized constant. In Eq. (4), d(vt, vx) is

the shortest path between nodes vt and vx, p and q are called

return and in-out parameters, controlling the walk direction,

respectively. Here, we implement 10 random walks of the fixed

length l = 80 starting from every node in a call graph, both

p and q are set to 1. After sampling, the source files in the

call graph are mapped into node sequences. Feeding them into

skip-gram architecture with the objective function Eq. (2), we

finally obtain the file embedding vectors, with the dimension

set to 32.

The node2vec algorithm has the following two advantages.

First, it can be used to handle large-scale networks. It is

known that the Bag-of-words model [20], another popular

vector representation method, can transform the word to vector

representation, in terms of words frequency, and achieves

great successful in Natural Language Processing (NLP), but

it is of low efficiency when dealing with big data. By

comparison, using the second order random walk, node2vec
improves the search efficiency dramatically, and shows the

ability to handle large-scale networks. Second, node2vec uses

the local topological information of nodes, making the file

embedding vector capture some domain-specific character-

istics. This is similar to the semantics in NLP, and thus

node2vec may be useful in analogical reasoning tasks. For

instance, in Derby (a database management system), the

file named as LocalizedInput.java handles localized input by

calling the file utilMain.java used to run database, while

the file LocalizedOutput.java generates localized output by

calling the file Main.java used to parsing and controlling.

By mapping these files into file embedding vectors, we have

f (LocalizedInput.java)- f (utilMain.java)+ f (Main.java) is close

to f (LocalizedOutput.java). This suggests that the relationship-

s between source files can be indeed obtained by using basic

mathematical operations on file embedding vectors.

B. Feature Extraction

The commit and communication patterns of a developer

are essentially task-oriented [6], [21], and thus exhibit highly

dynamic characters. This fact suggests that we should consider



the temporal features of developers when designing the rec-

ommendation system. In this study, after mapping the source

files into file embedding vectors, we propose four features to

capture the work pattern of each developer, as following:

• Temporal Technical Feature (TTF)
Assume developer Di sent an email to an expert at time

t, then TTF for the developer is defined as the mean

value of committed files in file embedding representation

at commit time ti, which is closest to t:

TTFi(ti) =
1

|Fi(ti)|
∑

v∈Fi(ti)

f (v), (5)

where Fi(ti) is the set of source files committed by

developer Di at time ti, and the operator | · | represents the

size of a set.

• Historical Technical Feature (HTF)
For developer Di, HTF is defined as the average TTF of

the developer by commit time ti.

HTFi(ti) =
1

Nc(ti)

∑
τ≤ti

TTFi(τ) · Δdτ, (6)

where Nc(ti) is the number of commits by time ti. The

time decay factor is defined as:

Δdτ = exp[−(t − τ)2/σ2], (7)

where τ is the commit time in history. In the present work,

the regularization factor is set as σ = 7 (days).

As discussed in Sec. II, social activities should not be

ignored when designing expert recommendation system. Thus,

we proposed two social features as following:

• Temporal Social Feature (TSF)
For developer Di, TSF is defined as the average TTF of

the last Q users that Di had contacted through email by

time t. It should be note that if the contacted user is

not a developer, his/her TTF is set to zero; and for each

contacted developer Dk, only the commit at the closest

time to t, denoted by tk, is considered, satisfying tk ≤ t.
Thus, we have

TSFi(t) =
1

|Vi|
∑
Dk∈Vi

TTFk(tk), (8)

where Vi is the set of contacted users of Di.

• History Social Feature (HSF)
Simply replacing TTF by HTF, we get:

HSFi(t) =
1

|Vi|
∑
Dk∈Vi

HTFk(tk). (9)

Here, for TSF and HSF, we always have |Vi| = Q.

C. Machine Learning Model
After extracting the four features, we adopt the Random For-

est (RF) algorithm to design expert recommendation system.

Here, in each OSS project, we divide the data into a training

set and a test set in chronological order, containing 80% and

20% of the data, respectively. The RF model is generated

by R package randomForest, and the parameters are set to

ntree=500, mtry=11.

IV. PerformanceMetrics

To evaluate our approach, we use accuracy, mean precision,

mean recall, mean F1-score and mean reciprocal rank as the

performance metrics. The first four metrics are all based on

the top@k recommendation list. Let R be the set of all email

requests of experts in the test set and D be the set of ground

truth experts, we have:

• Top@k Accuracy
It is defined as the proportion of correct recommendations

among all the email requests in the test set:

ACC =

∑
r∈R isCorrect(r,Top@k)

|R| , (10)

where isCorrect(r,Top@k) returns 1 if the email request

r of the expert as the ground truth is included in the top

k recommendation list, and returns 0 otherwise.

• Top@k Mean Precision
For expert Di ∈ D, the top@k precision is the propor-

tion of recommendations that correctly recommended Di

among all the recommendations including Di, which is

defined as:

PRE(i) =
∑

r∈Ri
isCorrect(r,Top@k)

|Top@k(i)| , (11)

where Ri means the set of email requests of expert Di and

Top@k(i) is the number of all the Top@k recommenda-

tion lists, for all the test samples, that contain expert Di.

Then, the top@k mean precision is defined as:

PRE =
1

|D|
∑
Di∈D

PRE(i). (12)

• Top@k Mean Recall
For expert Di ∈ D, the top@k recall is the ratio of

recommendations that correctly recommended Di to the

number of email requests of Di in ground truth, which is

defined as:

REC(i) =
∑

r∈Ri
isCorrect(r,Top@k)

|Ri| . (13)

Then, the top@k mean recall is defined as:

REC =
1

|D|
∑
Di∈D

REC(i). (14)

• Top@k Mean F1-score
For expert Di ∈ D, the F1-score is the harmonic mean

of precision and recall, then the top@k mean F1-score is

defined as:

F1 =
1

|D|
∑
Di∈D

2 × PRE(i) × REC(i)
PRE(i) + REC(i)

. (15)

• Mean Reciprocal Rank
For each email request of expert, denoted by r, we define

Reciprocal Rank (RR) as the multiplicative inverse of

the rank of the target expert in the recommendation list,

denoted by RR(r). If the target expert is not included

in the list, the corresponding RR(r) will be 0. The



mean reciprocal rank for all email requests thus can be

calculated by

MRR =
1

|R|
∑
r∈R

RR(r). (16)

Based on these metrics, we evaluate the performance of our

method against several traditional recommendation methods.

V. Experiments and Results

A. Traditional Recommendation Methods

Before the experiments, we first introduce two traditional

recommendation methods for comparison.

1) Collaborative Filtering (CF): The basic idea of CF is

grouping users or items according to similarity [22], [23].

COde Reviewer REcommendation based on Cross-project and

Technology experience (CORRECT) [16] is an improved

recommendation method used in software engineering, which

utilizes the developers’ experiences in Github to measure their

similarity.

Here, we focus on ASF projects and use the committed

source files to characterize the experience of a developer.

Assume developer Di sent an email request at time t, and

his/her latest commit, before time t, occurred at time ti, with

the set of committed source files denoted by Fi(ti). We then

get the latest h email requests sent by developers before time

t, and for each of these email requests r sent by developer

Dj, we obtain the latest commit of the developer before this

email request. Suppose this commit occurred at time t j, the

similarity between Di and Dj based on the two commits is

thus calculated by

Sim(Di, Dj) =
Fi(ti) ∩ F j(t j)√|Fi(ti)| ·

√|F j(t j)|
. (17)

We thus can rank the receivers of the h email requests and then

recommend them as experts to developer Di according to the

similarity between Di and the sender of these email requests.

In our study, h is set to 5. In fact, we varied h from 5 to 30,

and get the best performance when h = 5.

2) Random Walk based Context-aware Friend Recommen-
dation (RWCFR): RWCFR considers the current status of

a user and provide personalized recommendations in social

network [24]. In this study, we use the current commit and

communication patterns to represent the current status of a

developer. Specifically, assume developer Di send an email at

time t and the latest commit, before time t, occurred at time

ti, then we construct the temporal status network of developer

Di according to the following relationships.

• Current Ego-File Relationship: Between developer Di and

the source files committed by Di at time ti.
• Current Ego-Contact Relationship: Between developer Di

and the last ns email contacts of Di before time t.
• Current Developer-File Relationship: Assume time t j is

the time for the last commit of developer Dj in the

above contact list of Di before time t. Then the current

developer-file relationship are the relationship between

Fig. 4. Temporal status network. There have three relationships: current ego-
file relationship (longdash line), current ego-contact relationship (solid line)
and current developer-file relationship (dotted line).

TABLE I
Comparison between Our Approach and The Two BaselineMethods.

ACC PRE REC F1 MRR

Our Approach 0.5631 0.3478 0.3099 0.3278 0.4156
CF 0.4712 0.2361 0.2210 0.2283 0.3128

RWCFR 0.5202 0.2977 0.2066 0.2439 0.3002

the source files in the last n f commits by time t j and

their submitters.

Considering developers, users and source files as nodes and

integrating the above relationships as links, we can get a

temporal status network for each developer, as shown in Fig. 4.

In our study, n f and ns are set to 5 and 15, respectively. In

fact, we varied n f from 10 to 50 and ns from 5 to 20, and get

the best performance when n f = 5, ns = 15. We then employ

the random walk starting from developer Di with the transition

probability proportional to the weight (repetitive relationship)

of the link, and the walk length is set to 100 times of network

size. We calculate the frequency of visited nodes in the walk

path, and the developer or user of higher frequency is more

likely to become an expert.

B. Comparison

We compare our approach against two baseline recommen-

dation methods: CF and RWCFR, on the five performance

metrics. As demonstrated in TABLE I, we find that the

improvement of our method over the two baseline methods

is apparently: compare with baseline methods, the Top@5

Accuracy (ACC), Top@5 Mean Precision (PRE), Top@5

Mean Recall (REC), Top@5 Mean F1-score (F1) and Mean

Reciprocal Rank (MRR) are at least improved by 8.2%, 16.8%,

40.2%, 34.4% and 32.9%, respectively. Note that, for the two

social features, i.e.,TSF and HSF, in our approach, we set the

parameter Q = 7, meaning that only the most recent seven

contacts are considered when calculating these features. We

varied the value of Q and find Q = 7 is an appropriate value

to get reasonable performance.



(a) (b)
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Fig. 5. The performance metrics, including ACC, PRE, REC and F1, based
on each and all the four features, as functions of recommendation list length.

Besides, we also investigate the recommendation perfor-

mance of our method just using one of the four features.

As shown in Fig. 5, we find that the two features associated

to history, i.e., HTF and HSF, outperform the other two in

general. This phenomenon implies that, by comparison, the

historical features HTF and HSF, can provide more compre-

hensive information to describe the status of developer. In

addition, we also find that when applying all the four features

for recommendation, the performance metrics have significant

improvements over the single feature.

For the performance metrics PRE, REC and F1, HTF

behaves best, probably because the task-driven essence of

these OSS projects makes technical features more appropriate

to characterize appropriate experts. On the other hand, HSF

shows its advantage in ACC which mostly depends on the

number of correct recommendations. As we mentioned in

Sec. II, developers are used to share knowledge and experience

by email. Although this part of developers only occupy small

proportion of users, they are still more likely to be recom-

mended as experts.

VI. Discussions and Conclusion

The present work is a novel extension to the previous

studies of expert recommendation. Prior to our work, most

of the studies on experts recommendation had been focus on

independent source file, and omitted the file-file relationship.

The current study, while considering the file-file relationship,

we construct call graph of source file and mapping this

relationship into 32 dimension space, which capturing the file-

and function- level information. Considering the characteristics

of online cooperation in ASF projects, the proposed features

TABLE II
The Performances of Our Approach with Different Parameter q.

ACC PRE REC F1 MRR

p=1

q=0.25 0.5248 0.2926 0.2504 0.2699 0.3763

q=0.5 0.5247 0.2949 0.2521 0.2718 0.3750

q=1 0.5631 0.3478 0.3009 0.3278 0.4156
q=2 0.5272 0.2964 0.2553 0.2743 0.3781

q=4 0.5253 0.2900 0.2485 0.2677 0.3758

in our work capture the social and working status of developer,

and performs well in the design of recommendation system.

It is worth to noting that, in Sec. III, we have mentioned that

the parameter p and q are important parameters in node2vec.

However, compare to p, the parameter q have more clearer

physical meanings, i.e., q > 1, the random walk is approxi-

mately BFS behavior and q < 1 is DFS-like exploration. In

this work, beside q = 1, we also explore different q values

on the 20 OSS projects, e.g., q = 0.25, 0.5, 2, 4. As shown in

Tab. II, the results show that q = 1 performs best under our

evaluation metrics.

In summary, we adopt the node2vec method to mapping

the source file in call graph to file embedding vector and

propose four new features, including TTF, HTF, TSF, and

HSF, to capture the work status and social relationship of

developers. By utilizing RF algorithm, we design a new expert

recommendation approach in OSS projects. The experiments

validate the effectiveness of our method. Furthermore, when

the recommendation list increases, HTF dominates the other

three features under the performance metrics PRE, REC and

F1. Our work highlights that the network theory integrated

with the machine learning methods can improve the predicting

performance, and thus is necessary and important complement

to the current recommendation methods.
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